Factor Investing: un’analisi critica di Andrea Gonzali

Negli ultimi due decenni, l’investimento basato sui fattori, o investimento fattoriale (factor investing), ha guadagnato notevole popolarità. Nell’articolo “Causal Factor Investing: can Factor Investing become scientific?”, pubblicato nel 2022 (M. L. De Prado, Causal Factor Investing: can Factor Investing become scientific?, December 2, 2022. Available at SSRN.), Marcos López de Prado evidenzia le carenze scientifiche di questo approccio, sottolineando come esso sia ancorato a metodi statistici sviluppati negli anni ’30 del Novecento.

Nonostante le strategie di investimento basate sui fattori siano state oggetto di ampia revisione scientifica, con migliaia di studi pubblicati su riviste finanziarie di prestigio, i risultati prodotti dal 2007 in poi sono stati molto al di sotto delle aspettative.

Gli investitori hanno ottenuto, in media, un rendimento annuo dell’1% circa, al lordo dei costi di transazione e delle commissioni di gestione (M.L. De Prado, The Causal AI Conference 2023: Causal Factor Investing (organized by causaLens).

Il motivo di questi insoddisfacenti risultati è attribuibile, in gran parte, ai metodi statistici impiegati, che si sono rivelati meno efficaci di quanto sostenuto da numerosi studiosi.

Nel metodo scientifico, la causalità è fondamentale: le teorie scientifiche avanzano ipotesi di natura causale, esprimibili come “x provoca y attraverso il meccanismo m”. Senza una comprensione approfondita del meccanismo, è impossibile controllare l’efficacia di una ipotetica soluzione.

Nell’investimento fattoriale, questa componente causale è spesso assente. Gli autori che pubblicano studi anche su prestigiose riviste finanziarie tendono a focalizzarsi sull’identificazione di correlazioni: eseguono analisi di regressione, calcolano i p-value e identificano delle anomalie. Tuttavia, manca quasi sempre un modello teorico causale che possa spiegare la ragione per cui tali anomalie si manifestano.

Sono stati studiati e pubblicati così tanti fattori che si è arrivati a coniare il termine “Factor Zoo” (C. R. Harvey, Y. Liu, A Census of the Factor Zoo, February 25, 2019. Available at SSRN). Questo fenomeno non può non nascondere la presenza di un qualche errore di fondo.

De Prado evidenzia due tipologie di affermazioni erronee:

  • Errori di tipo A: conducono a conclusioni spurie originate da errori nella metodologia statistica utilizzata.
  • Errori di tipo B: conducono a conclusioni spurie da ricondursi alla correlazione tra le variabili analizzate: tale correlazione, infatti, non implica una relazione causale.

In sintesi, l’investimento basato sui fattori è un metodo di investimento largamente adottato ma che, tuttavia, pecca di fondamenta scientifiche solide. Sebbene faccia uso di tecniche statistiche consolidate, non offre una chiara spiegazione causale delle anomalie che identifica.

L’approccio dovrebbe rivolgere maggiore attenzione alla comprensione dei meccanismi alla base delle anomalie per formulare strategie di investimento più efficaci.

Nell’investimento fattoriale, si tenta di prevedere l’andamento di una variabile Y in funzione di una variabile X, ritenuta causa del risultato. In genere, i ricercatori selezionano un modello specifico, Y, che desiderano prevedere sulla base di X, aggiungendo poi altri regressori come, ad esempio, il ciclo economico o la dimensione dell’impresa. Sebbene un’analisi di regressione multipla sembri implicare una dichiarazione causale, in realtà questa dichiarazione non c’è.

Gli autori, infatti, in genere omettono di fornire il grafico causale relativo a tale regressione: un passaggio che dovrebbe essere obbligatorio, considerando che si sta regredendo Y in funzione di variabili considerate causali.

Un grafico causale è una semplice rappresentazione visuale che collega due variabili mediante una freccia, indicando che una variabile, identificata come causa, esercita un’influenza sull’altra.

Senza un grafico causale, come si determinano le variabili che devono essere controllate? Non si può. Se le affermazioni riguardanti le relazioni causali sono assenti, si generano ambiguità. Il modello viene presentato come se fosse causale, ma in realtà evidenzia solo una relazione di tipo associativo.

Gli attuali modelli di investimento basati sui fattori non includono mai un grafico causale che possa essere sottoposto a falsificazione o a convalida. In econometria, stabilire una relazione causale è un processo complesso che implica l’analisi di due variabili, X e Y, e del loro rapporto. Questa relazione può essere tanto causale quanto non causale, ed è cruciale implementare i controlli statistici adeguati che servono a evitare di identificare semplici associazioni prive di causalità.

Un altro grosso problema è che la prassi econometrica non si limita a effettuare un singolo test: al contrario, vengono eseguiti numerosi backtest, spesso con l’intento di ottimizzare l’indice di Sharpe di un certo modello. Questa abbondanza di backtest, tuttavia, ha l’effetto di amplificare la presenza di risultati spuri, che de Prado classifica come di tipo A. In presenza di questi risultati spuri, l’indice di Sharpe reale è nullo, mentre quello emerso dai backtest appare elevato, essendo frutto di un modello selezionato dopo innumerevoli test.

I risultati spuri di tipo B emergono quando esiste un’associazione effettiva tra le variabili, ma tale associazione non è necessariamente causale. Questo può accadere quando non esiste un legame causale diretto tra X e Y, poiché la correlazione tra le due variabili avviene attraverso un meccanismo indiretto. È importante sottolineare che, in un’associazione, non è rilevante quale delle due variabili agisca per prima. De Prado dettaglia ulteriormente le diverse sottocategorie di risultati spuri di tipo B (B1, B2, B3) nell’articolo citato in precedenza.

Per una corretta specificazione di un modello causale, la presenza del grafico causale è indispensabile. Occorre esplicitare la relazione causale tra due o più variabili e il meccanismo che le collega, e successivamente fornire le prove a sostegno. Un elemento fondamentale di questo processo è che tutte queste affermazioni siano falsificabili.

In ambito finanziario, il grafico causale rappresenta uno strumento essenziale per comprendere la correlazione tra le variabili e il loro effetto sul rendimento di una strategia di investimento. Un grafico causale è un modello che consente ai ricercatori di controllare le variabili in gioco e prevedere i relativi esiti, minimizzando così il rischio di generare risultati inaffidabili.

De Prado osserva che le prime ricerche in campo finanziario, incluso il lavoro del premio Nobel Eugene Fama realizzato in collaborazione con Kenneth French, sono state portate avanti in un periodo in cui gli strumenti metodologici non erano così avanzati come oggi. Queste mancanze, però, oggi non sono più accettabili.

I ricercatori, prima di effettuare una regressione, devono identificare i grafici causali coinvolti. Una volta compreso ciò che stanno monitorando, possono testare la validità del grafico causale, apportarvi eventuali modifiche, formulare le loro ipotesi e implementare il modello sulla base di tali presupposti.

Invece, tutto ciò non si sta ancora verificando: si assiste a un fenomeno diffuso di p-hacking da parte degli studiosi, che eseguono milioni di regressioni alla ricerca di relazioni che quasi sempre sono di correlazione spuria. Il p-hacking è definito anche data snooping, e consiste nel massimo sfruttamento dell’analisi dei dati al fine di scoprire dei pattern che vengono presentati come statisticamente significativi, anche quando non esiste un’effettiva relazione causale sottostante.

La seguente tabella, ripresa dal solito articolo di De Prado che abbiamo citato all’inizio, presenta la gerarchia delle prove in campo finanziario:

Clicca sull’immagine per accedere alla fonte – Testo e traduzione a cura dell’autore

La gerarchia delle prove, in finanza, è un concetto complesso che coinvolge diversi livelli di ricerche empiriche: dall’opinione degli esperti ai case studies, agli studi econometrici e agli esperimenti controllati.

L’opinione degli esperti è una prova aneddotica e manca di rigore scientifico. Questo tipo di prova è l’analogo di un testimonial pubblicitario dove il valore dell’informazione si basa sull’autorità della persona che la fornisce.

I case studies rappresentano un livello leggermente più avanzato di analisi rispetto all’opinione degli esperti, ma le conclusioni tratte sono spesso anch’esse basate su dati aneddotici.

Gli studi econometrici impiegano metodi statistici più rigorosi per esplorare le relazioni tra variabili. Sebbene questi studi siano più dettagliati e identifichino delle correlazioni, non garantiscono necessariamente il successo negli investimenti.

Gli interventi simulati (“simulated interventions”) sono un mezzo più solido per esaminare le relazioni causali tra le variabili. Pur basandosi su ipotetici grafici causali e presentandosi come affermazioni non verificate, questi metodi permettono una più accurata comprensione delle ipotesi sottostanti all’analisi condotta e offrono la possibilità di valutare i rischi associati alle decisioni prese.

Gli esperimenti naturali e gli esperimenti randomizzati controllati detengono il più alto grado di rigore scientifico e, sebbene siano più comunemente utilizzati in alte discipline, trovano applicazione anche in aree specialistiche della finanza.

In conclusione, in finanza è fondamentale avere una chiara comprensione della gerarchia delle prove per poter valutare la solidità scientifica delle affermazioni e delle descrizioni che accompagnano i vari strumenti finanziari.

Ribadiamo che anche gli studi pubblicati su autorevoli riviste scientifiche non hanno necessariamente un alto livello di rigore scientifico. Spesso, questi studi si limitano a dimostrare correlazioni tra variabili, sulle quali vengono talvolta basate le decisioni d’investimento, proprio come avviene nel factor investing.

A cura di:

Clicca sull’immagine per accedere a Dedalo Invest

LE AVVERTENZE SONO PARTE INTEGRANTE DELL’ARTICOLO

AVVERTENZE: I contenuti di queste note e le opinioni espresse non devono in nessun caso essere considerati come un invito all’investimento. Le analisi non costituiscono mai una sollecitazione all’acquisto o alla vendita di qualsivoglia strumento finanziario.

Queste note hanno per oggetto analisi finanziarie e ricerca in materia di investimento. Qualora vengano espresse delle raccomandazioni, queste hanno carattere generale, sono rivolte ad un pubblico indistinto e mancano dell’elemento della personalizzazione.

Sebbene frutto di approfondite analisi, le informazioni contenute in queste note possono contenere errori. Gli autori non possono in nessun caso essere ritenuti responsabili per eventuali scelte effettuate dai lettori sulla base di tali informazioni erronee. Chi decide di porre in essere una qualsiasi operazione finanziaria sulla base delle informazioni contenute nel sito lo fa assumendone la totale responsabilità.  

DISCLAIMER: The contents of these notes and the opinions expressed should in no case be considered as an invitation to invest. The analyzes never constitute a solicitation to buy or sell any financial instrument.

These notes relate to financial analysis and investment research. If recommendations are made, these are of a general nature, are aimed at an indistinct audience and lack the element of personalization.

Although the result of in-depth analysis, the information contained in these notes may contain errors. The authors cannot under any circumstances be held responsible for any choices made by readers on the basis of such erroneous information. Anyone who decides to carry out any financial transaction on the basis of the information contained in the site does so assuming full responsibility.